extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32×C6).1D4 = C3×S32⋊C4 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).1D4 | 432,574 |
(C32×C6).2D4 = C3×C3⋊S3.Q8 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).2D4 | 432,575 |
(C32×C6).3D4 = C3×C32⋊D8 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).3D4 | 432,576 |
(C32×C6).4D4 = C3×C32⋊2SD16 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).4D4 | 432,577 |
(C32×C6).5D4 = C3×C32⋊Q16 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).5D4 | 432,578 |
(C32×C6).6D4 = C3⋊S3.2D12 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).6D4 | 432,579 |
(C32×C6).7D4 = S32⋊Dic3 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).7D4 | 432,580 |
(C32×C6).8D4 = C33⋊C4⋊C4 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).8D4 | 432,581 |
(C32×C6).9D4 = C33⋊D8 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).9D4 | 432,582 |
(C32×C6).10D4 = C33⋊6SD16 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).10D4 | 432,583 |
(C32×C6).11D4 = C33⋊7SD16 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 4 | (C3^2xC6).11D4 | 432,584 |
(C32×C6).12D4 = C33⋊Q16 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).12D4 | 432,585 |
(C32×C6).13D4 = (C3×C6).8D12 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).13D4 | 432,586 |
(C32×C6).14D4 = (C3×C6).9D12 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).14D4 | 432,587 |
(C32×C6).15D4 = C32⋊2D24 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).15D4 | 432,588 |
(C32×C6).16D4 = C33⋊8SD16 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 24 | 8+ | (C3^2xC6).16D4 | 432,589 |
(C32×C6).17D4 = C33⋊3Q16 | φ: D4/C1 → D4 ⊆ Aut C32×C6 | 48 | 8- | (C3^2xC6).17D4 | 432,590 |
(C32×C6).18D4 = C3×C32⋊2D8 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).18D4 | 432,418 |
(C32×C6).19D4 = C3×C3⋊D24 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).19D4 | 432,419 |
(C32×C6).20D4 = C3×Dic6⋊S3 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).20D4 | 432,420 |
(C32×C6).21D4 = C3×D12.S3 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).21D4 | 432,421 |
(C32×C6).22D4 = C3×C32⋊5SD16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).22D4 | 432,422 |
(C32×C6).23D4 = C3×C32⋊2Q16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).23D4 | 432,423 |
(C32×C6).24D4 = C3×C32⋊3Q16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).24D4 | 432,424 |
(C32×C6).25D4 = C3×D6⋊Dic3 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).25D4 | 432,426 |
(C32×C6).26D4 = C3×C6.D12 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).26D4 | 432,427 |
(C32×C6).27D4 = C3×Dic3⋊Dic3 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).27D4 | 432,428 |
(C32×C6).28D4 = C3×C62.C22 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).28D4 | 432,429 |
(C32×C6).29D4 = C33⋊6D8 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).29D4 | 432,436 |
(C32×C6).30D4 = C33⋊7D8 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).30D4 | 432,437 |
(C32×C6).31D4 = C33⋊8D8 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).31D4 | 432,438 |
(C32×C6).32D4 = C33⋊12SD16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).32D4 | 432,439 |
(C32×C6).33D4 = C33⋊13SD16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).33D4 | 432,440 |
(C32×C6).34D4 = C33⋊14SD16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).34D4 | 432,441 |
(C32×C6).35D4 = C33⋊15SD16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).35D4 | 432,442 |
(C32×C6).36D4 = C33⋊16SD16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).36D4 | 432,443 |
(C32×C6).37D4 = C33⋊17SD16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).37D4 | 432,444 |
(C32×C6).38D4 = C33⋊6Q16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).38D4 | 432,445 |
(C32×C6).39D4 = C33⋊7Q16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).39D4 | 432,446 |
(C32×C6).40D4 = C33⋊8Q16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).40D4 | 432,447 |
(C32×C6).41D4 = C62.77D6 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).41D4 | 432,449 |
(C32×C6).42D4 = C62.78D6 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).42D4 | 432,450 |
(C32×C6).43D4 = C62.79D6 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).43D4 | 432,451 |
(C32×C6).44D4 = C62.80D6 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).44D4 | 432,452 |
(C32×C6).45D4 = C62.81D6 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).45D4 | 432,453 |
(C32×C6).46D4 = C62.82D6 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).46D4 | 432,454 |
(C32×C6).47D4 = C33⋊9D8 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).47D4 | 432,457 |
(C32×C6).48D4 = C33⋊18SD16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).48D4 | 432,458 |
(C32×C6).49D4 = C33⋊9Q16 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | 4 | (C3^2xC6).49D4 | 432,459 |
(C32×C6).50D4 = C62.84D6 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).50D4 | 432,461 |
(C32×C6).51D4 = C62.85D6 | φ: D4/C2 → C22 ⊆ Aut C32×C6 | 48 | | (C3^2xC6).51D4 | 432,462 |
(C32×C6).52D4 = C32×C24⋊C2 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).52D4 | 432,466 |
(C32×C6).53D4 = C32×D24 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).53D4 | 432,467 |
(C32×C6).54D4 = C32×Dic12 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).54D4 | 432,468 |
(C32×C6).55D4 = C32×C4⋊Dic3 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).55D4 | 432,473 |
(C32×C6).56D4 = C32×D6⋊C4 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).56D4 | 432,474 |
(C32×C6).57D4 = C3×C24⋊2S3 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).57D4 | 432,482 |
(C32×C6).58D4 = C3×C32⋊5D8 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).58D4 | 432,483 |
(C32×C6).59D4 = C3×C32⋊5Q16 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).59D4 | 432,484 |
(C32×C6).60D4 = C3×C12⋊Dic3 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).60D4 | 432,489 |
(C32×C6).61D4 = C33⋊21SD16 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).61D4 | 432,498 |
(C32×C6).62D4 = C33⋊12D8 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).62D4 | 432,499 |
(C32×C6).63D4 = C33⋊12Q16 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 432 | | (C3^2xC6).63D4 | 432,500 |
(C32×C6).64D4 = C62.147D6 | φ: D4/C4 → C2 ⊆ Aut C32×C6 | 432 | | (C3^2xC6).64D4 | 432,505 |
(C32×C6).65D4 = C32×Dic3⋊C4 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).65D4 | 432,472 |
(C32×C6).66D4 = C32×D4⋊S3 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).66D4 | 432,475 |
(C32×C6).67D4 = C32×D4.S3 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).67D4 | 432,476 |
(C32×C6).68D4 = C32×Q8⋊2S3 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).68D4 | 432,477 |
(C32×C6).69D4 = C32×C3⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).69D4 | 432,478 |
(C32×C6).70D4 = C32×C6.D4 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).70D4 | 432,479 |
(C32×C6).71D4 = C3×C6.Dic6 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).71D4 | 432,488 |
(C32×C6).72D4 = C3×C6.11D12 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).72D4 | 432,490 |
(C32×C6).73D4 = C3×C32⋊7D8 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).73D4 | 432,491 |
(C32×C6).74D4 = C3×C32⋊9SD16 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).74D4 | 432,492 |
(C32×C6).75D4 = C3×C32⋊11SD16 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).75D4 | 432,493 |
(C32×C6).76D4 = C3×C32⋊7Q16 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 144 | | (C3^2xC6).76D4 | 432,494 |
(C32×C6).77D4 = C3×C62⋊5C4 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 72 | | (C3^2xC6).77D4 | 432,495 |
(C32×C6).78D4 = C62.146D6 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 432 | | (C3^2xC6).78D4 | 432,504 |
(C32×C6).79D4 = C62.148D6 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).79D4 | 432,506 |
(C32×C6).80D4 = C33⋊15D8 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).80D4 | 432,507 |
(C32×C6).81D4 = C33⋊24SD16 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).81D4 | 432,508 |
(C32×C6).82D4 = C33⋊27SD16 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).82D4 | 432,509 |
(C32×C6).83D4 = C33⋊15Q16 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 432 | | (C3^2xC6).83D4 | 432,510 |
(C32×C6).84D4 = C63.C2 | φ: D4/C22 → C2 ⊆ Aut C32×C6 | 216 | | (C3^2xC6).84D4 | 432,511 |
(C32×C6).85D4 = C22⋊C4×C33 | central extension (φ=1) | 216 | | (C3^2xC6).85D4 | 432,513 |
(C32×C6).86D4 = C4⋊C4×C33 | central extension (φ=1) | 432 | | (C3^2xC6).86D4 | 432,514 |
(C32×C6).87D4 = D8×C33 | central extension (φ=1) | 216 | | (C3^2xC6).87D4 | 432,517 |
(C32×C6).88D4 = SD16×C33 | central extension (φ=1) | 216 | | (C3^2xC6).88D4 | 432,518 |
(C32×C6).89D4 = Q16×C33 | central extension (φ=1) | 432 | | (C3^2xC6).89D4 | 432,519 |